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LETTER TO THE EDITOR 

Lattice shapes and scaling functions for bond random 
percolation on honeycomb lattices 

Chin-Kun Hut§ and Jau-Ann Chentt 
t Institute of Physics. Academia Sinica, N h g ,  Taipei, Taiwan 11529 
$ D e m e n t  of Physics, National Central University, Chung-Li, Taiwan 320 

Received 18 November 1994 

Abstract. We use a histogram Monte Carlo simulation method to calculate the scaling funetions 
of the existence probability EB and the percolation probability P of the bond random pncolation 
model on honeycomb lattices with aspect ratios of 0 5  and 20. We find &at such different 
aspect ratios give quite different scaling functions near the critic$ region. However, they give 
a consistent a'itical point, critical exponents. and the thermodynamic order parameter from 
renormalization-group calculations. Some interesting theoretical problems related to this work 
are discussed. 

Finite-size scaling has been an important subject of reseqch in recent~decades 11-61. 
According to the theory of finite-size scaling [ I 4 1  if the dependence of a physical quantity 
Q of a thennodynamic system on the parameter t ,  which vanishes at the critical point, may 
be written as Q(t)  - tu near the critical point, then for a finite system of linear dimension 
L at t ,  the corresponding quantity Q(L,  t )  may be written as . .  

Q(L,  f) - L-?"F(tLn) ( 1 )  
where yt (= u-l) is the thermal scaling power and F ( x ) ,  x = tLn,  is called a scaling 
function. When finitesize scaling is valid, the scaled dap  Q ( L ,  t)/L-"n for different 
values of L fall on the same curve, represented by F(x) ,  if they are plotted as a function 
of the scaling variable x. Thus it is important to develop new methods to calculate scaling 
functions and to know the behaviour of the scaling functions under various conditions. 

Recently, Hu developed the histogram Monte Carlo simulation method (HMCSM) 17-91 
which may be easily applied to calculate the scaling functions for phase 'uansition and 
percolation models [10-14]. In a recent letter 1131, Hu used the HMCSM to calculate the 
scaling functions of the existence probability Ep and the percolation probability P of the 
site percolation model on square lattices with free and periodic boundary conditions. He 
found that different boundary conditions give quite different scaling functions near the 
critical region. However, they give a consistent critical point, critical exponents, and the 
thermodynamic order parameter from renormalization-group calculations. In this letter, we 
use the HMCSM to calculate the existence probability Ep and the percolation probability P 
of the bond random percolation model on the honeycomb lattices with different aspect ratios 
and linear dimensions, where the aspect ratio is the ratio of the horizontal linear dimension 
to the vertical h e a r  dimensions of the lattice. For a given aspect ratio, the calculated Ep 
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Figure 1. (a) A honeycomb lanice of l i n w  dimension L = 8 may be 
obtained from an 8 x 8 square lattice by deleting half of the vertical bonds. 
(6) Honeycomb lattice with aspect ratio n = 0.5 and L = 8. (c)  Honeycomb 
lanice with aspect ratio a = 2 and L = 8. 

and P have very good scaling behaviour. We find that the scaling functions for different 
aspect ratios are quite. different near the critical region. However, when we apply the large 
cell-to-cell Monte Carlo renormalization-gaup method [7-91 to calculate the critical point, 
critical exponents, and the thermodynamic order parameter, we find that lattices of different 
aspect ratios give consistent results. The implications of our calculated results on some 
theoretical problems of current interest will be discussed at the end of this letter. 

The honeycomb lattice may be generated from a square lattice by removing one quarter 
of the nearest-neighhour bonds as shown in figure 1. Figure l (a)  is originally an 8 x 8 
square lattice. By removing one half of the vertical bonds of the original square lattice, 
we obtain'figure I@), whose site-bond connections are the same as the honeycomb lattice 
shown in figure l(b). For convenience, we call figure l ( b )  a honeycomb lattice of linear 
dimension 8, whose number of lattice sites N is 64 ahd whose number of nearest-neighbour 
bonds E is 84 for the free boundary condition and is 96 for the periodic boundary condition. 
In general, for a honeycomb lattice G of linear dimension L,  the number of lattice sites N 
is Zz and the number of nearest-neighbour bonds is L x ( L  - 1) x for the free boundary 
condition and is L x L x 2 for the periodic boundary condition. Rotating figure I(b) by 
90°, we obtain figure l(c) whose number of lattice sites N and number of nearest-neighbour 
hands E are the same as those of figure l(b). In this letter, we consider the bond random 
percolation model (BRPM) on lattices G of N sites and E nearest-neighbour bonds shown 
in figures l(b) and (c) ,  but with linear dimensions L being 8, 16.32 and 64. 

In the BRPM on G, each bond of G is occupied with a probability p .  where 0 6 p < 1. 
The probability weight for the appearance of a subgraph G' of b(G') occupied bonds is 
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given by 

7 Z ( ~ ' ,  p )  = pb( '3 ( l  - p)E-b(G') ,  (2) 
In this letter, the cluster which extends from the top line of G to the bottom line of G is' 
called a percolating cluster. The subgraph whose largest cluster is percolating is called a 
percolating subgraph and will be denoted by G i .  The subgraph whose largest cluster is not 
percolating is called a non-percolating subgraph and will be denoted by G;. The existence 
probability E,(G, p )  and the percolation probability P(G,  p )  for the BRPM on G are given 
by,  

P(G,  p) = 4 G b ,  p)N*(Gb)IN (4) 
GLGG 

where ~r(G6 ,  p )  is defined by (2). The sums in (3) and (4) are over all Gb of  G ;  N*(G') 
is the total number of-lattice sites in the largest cluster of G .  The definitions of G,, G f ,  
and N*(G')'in the present letter aTe different from the corresponding definitions of [7, 81. 
The new definitions allow us to save a lot of computing time and therefore we may do the 
calculations for larger systems. 

In the histogram Monte Carlo simulation of the BRPM on G [7], we choose a sequence 
of bond probabilities of increasing magnitudes: 0 < p~ < pz  2 p, < . . . < pm c 1. For 
a given p j ,  1 < j < w ,  we generate N R  different subgraphs G'. The data obtained from 
W N ,  different G' are then used to'construct three mays of length E with elements N,(b), 
Nf (b ) ,  and Npp(b),  0 < b < E ,  which are, respectively, the total numbers of generated 
percolating subgraphs with b occupied bonds, the total number of generated non-percolating 
subgaphs with b occupied bonds, and the sum of N*(G') over subgraphs with b occupied 
bonds. The existence probability Ep and the percolation probability P at any value of the 
bond occupation probability p may be calculated from the following equations [SI: 

We have used (5) and (6) to calculate the existence probability Ep(G, p )  and the 
percolation probability P(G,  p )  of the BRPM on the honeycomb lattices with the free 
boundary condition and with linear dimensions L = 8, ~ 16, 32 and 64. We consider both 
the aspect ratio a = 0.5 and 2. Typical calculated results of Ep and P are shown in figure 
2. For the BRPM on the honeycomb lattice, it is generally believed that the exact yt, y,, 
and pc  are 0.75, 1.8958,. . . , and 0.65271, respectively 161. Using the exact value of yt and 
pc [6], we have plotted the data for Ep(G, p .  q )  represenfed in figure 2(a) as a function of 
x = (p - pc)LYr in figure 3(u). Since the critical exponent of Ep is zero [6], we need not 
divide Ep by the factor L-"Yc.- Using the same values of yt and pel we have also plotted 
P(G,  p ,  q)/L-BYl for P(G,  p )  presented in figure 2(b) as a function of x = ( p  - pc)Lx in 
figure 3(b). Figures 3(a) and ( b )  show that Ep and P have nice finite-size scaling behaviour., 
However, the scaling functions for a = 0.5 and a = 2 are quite different As L approaches 
large values, Ep(G, p c )  approaches 0.25(6) for the case a = 0.5 and approaches 0.75(7).for 
the case a = 2.0. 
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Figure 2. The d c u l 5 e d  result! for the bond random percohdon model on the honeycomb 
lattices with linear dimensions L 8,16,32 and 64. The wand Nn values are 301 and 2 x IO5, 
respectively. Full curves m for a = 0.5 and broken curves are for a = 2. (Q) E p  8s a function 
of p. (b) P as a function of p. 

We have used the percolation renormalization-group equations [7] to calculate the critical 
point pc, the thermal scaling power yt, and the field scaling power yh for the BRPM on the 
honeycomb lattices with a = 0.5 and 2. In both cases, we use w = 301 and NR = 200000 
for L1 = 64 and for Lz = 32. We obtain pc  = 0.65(4), yt = 0.7(5), and yh = 1.89(9) 
for a = 0.5 and p E  = 0.65(3), yt = 0.7(5), and yh = 1.89(6) for a = 2. Two results are 
consistent. Our numerical results are very close to exact results [6]. 

We have used method of 191 to calculate the thermodynamic order parameter P- for 
the BRPM with a = 0.5 and 2, which are shown by full and broken curves in figure 4, 
respectively. The two calculated results are consistent. 

From our calculated results, we may discuss some theoretical problems of current 
interest. The results of this letter show that the scaling functions of percolation problems 
depends on the aspect ratio a. Using the idea of Langlanda et al [E], we may adjust the 
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Figure 3. Scaling functions for the honeycomb lattices with linear dimensions. L = 8 (dotted 
curves), 16 (broken curves), 32 (long broken c m e s ) ,  and 64 (full curves). The lower and upper 
lines are for a being 0.5 and 2, respectively. (a) The calculated Ep as a function of x ,  where 
x = ( p  - pdLY'. The function is the scaling function F(G, x ) .  (b) The calcnlated PlL+'t as 
a function of x ,  where x = ( p  - p,)L-*. The function is the scaling function S(G. x ) .  

ratio a for various lattices on the same space dimensions so that different lattices give the 
same value of Ep(G, pc) ,  i.e. F(G, 0). Under such conditions, we may ask whether tlie 
scaling functions, F(G, x), for various lattices are consistent for x near 0. If this is the 
case, then we have the universal scalingfunction considered by Privman and Fisher [3]: 
We are using the histogram Monte Carlo simulation method [7, 81 to~calculate such a ratios 
and the scaling functions for percolation on various two to five-dimensional lattices. 

In summary, the scaling functions of Ep and P at near pc depends sensitively on aspect 
ratio of the lattice. The histogram Monte Carlo simulation method [7-91 is useful for 
identifying the miversuliiy classes of Ep(G. pc) ,  which is of much'current interest [1&18], 
and for obtaining the scaling functions for Ep and P, and for calculating the critical point, 
critical exponents, and the thermodynamic order parameter. 

' 
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Figure 4. The calculated thermodynamic order pa- 
ramelen P,(G. p) of the bond random percolation 
model on the honeycomb lattice. The full and bro- 
k n  cur fa  are for the aspect ratio n being 0.5 and 
2, respectively. 
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